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A new approach to calculate two-dimensional plane and axisymmetric incompressible 
potential flows is presented. The dependent variables of the new approach are the streamwise 
velocity, along a set of chosen streamlines, and the coordinates of the chosen streamlines in 
the cross-stream plane. Thus, the method generates directly the streamline pattern for a given 
flow. The method is particularly well suited for computing flow through complex con- 
ligurations. t? 1985 Academic Press, Inc. 

I. INTRODUCTION 

Use of the stream function or the streamline coordinates for the computation of 
flow fields is well known. For example, in the method of hodograph (e.g., 
Oswatitsch [ 11) equations for the potential flow are formulated using the 
streamlines and the orthogonal trajectories as the dependent variables, and the 
velocity components as the independent variables. Uchida and Yasuhara [2] and 
Ishii [3] have calculated axisymmetric potential flows using this set of variables. 
Another interesting study that makes use of the streamline coordinates is the work 
of Pearson [4] on the computation of isentropic flows. In this study one starts with 
a guessed streamline geometry for the given flow and then calculates the density to 
satisfy the Bernoulli’s equation and the guessed streamline geometry. With the den- 
sity thus known, the streamline geometry is next corrected to satisfy the individual 
momentum equations for the velocity components. The streamline geometry, thus 
obtained, provides the starting point of the next cycle of iteration. 

Over the past few years, we have been developing a new approach to the use of 
streamlines for the computation of two- and three-dimensional flow fields. The 
dependent variables of this approach are the streamwise (not axial) velocity along a 
set of chosen streamlines, and the coordinates of the chosen streamlines in the 
cross-stream plane. Let the main flow direction be along x, and (y, z) be the coor- 
dinates of the cross-stream plane. Further, let subscript s represent a particular 
streamline. The dependent variables of the new approach are: U,(x, t), streamwise 
velocity along the streamline s; and Y,(x, t) and ZJx, t), coordinates of the 
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FIG. 1. The dependent variables: U,, the streamwise velocity; Y, and Z,, the streamline coordinates 
in the cross-stream plane. 

streamline s in the cross-stream plane (see Fig. 1). The independent variables are t, 
the time; X, the distance along the main flow direction (distance along the duct axis 
for internal flows); and the initial coordinates of the streamline S. 

The differential equation for U, is simply the equation of motion of a fluid 
element moving along a streamline, i.e., 

where f, is the force per unit mass acting on the fluid element in the streamwise 
direction. By expressing f, in terms off,, f,,, and f,, the rectangular components of 
f, Eq. (1) can be written as 

Dus f,+ r:f,+Zfz -= 
Dt J(I + Y;.’ + z:')' 

where the prime indicates derivatives with respect to x. To derive the differential 
equation for Y,S, project the motion of the fluid element onto the x-y plane as 
shown in Fig. 2. In Fig. 2, s,, represents the projection of the streamline s on the 
x-y plane, and f, is normal to s,,,. By applying Newton’s second law of motion in 
the direction off,,, one obtains 
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FIG. 2. Projection of the streamline s on the (x, y) plane. 



226 MAHESH S. GREYWALL 

where R,, is the radius of curvature of s,, and U+ is the projection of U, on the 
x-y plane. By expressing R,, in terms of Y: and Y:‘, UXr;,, in terms of U,, and f, in 
terms off, and f,., Eq. (3) can be rewritten as 

Y; (1+ Y;‘+z;2) 
I 

(1 + Yi2)3j2= (1 + Yi2) ug [&i&j-&J 

or more simply as, 

Yf:=(l+ Y;2+Z:2)(f”- Y:L)P~. 

Similarly one obtains for Z, 

(4) 

z: = (1 + Y12 + z;‘)(fz - z:fJ/uf. (5) 

These equations were solved for two-dimensional flows in Ref. [S], and for three- 
dimensional flows in Ref. [6], with the approximation that the flows were 
“parabolic” (boundary layer) type flows. For such flows the streamline curvature, 
associated with the deflection of the streamlines caused by the continuity equation, 
is assumed negligible and Eqs. (4) and (5) simply yield the familiar result that the 
pressure field in the cross-stream plane is uniform Also, Yi and Z: in Eq. (2) were 
neglected in comparison with unity. In the present paper, a solution of these 
equations for steady, incompressible, two-dimensional plane and axisymmetric 
potential flows is presented. 

II. TWO-DIMENSIONAL POTENTIAL FLOW 

Plane Flows 

For steady, incompressible, and inviscid flow, Eq. (2) when integrated yields the 
Bernoulli’s equation, 

(6) 

where p, and p are the pressure and density, respectively, along the streamline s, 
and C is a constant. For uniform inlet flow conditions for internal flows, and for 
uniform flow far away from the obstacle for external flows, C will be the same for 
ail the streamlines. In the present study it is assumed that C is same for all the 
streamlines. For the sake of brevity, the subscript s in Y, has been omitted from 
here on, and angle a, defined by 

tana= Y, 

has been introduced. 
In the present case the force f, in Eq. (3), being solely due to the pressure 
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gradients in the cross-stream plane, is easier to calculate when expressed in terms of 
f, andf,, its components along y and S, respectively (see Fig. 2). One thus obtains. 

1 
ycos3a= -- 

pu: [ 
’ !b-tana?!!? - 

c0sa ay 1 as * 

Further the gradient of p, with respect to s is expressed as 

ap, ap, 
-==Os aax’ as 

Next the pressure gradients in Eq. (7) are expressed in terms of the velocity 
gradients by the use of Eq. (6) to obtain 

r’c&=i - 
[ 

’ !.5-sinaE!! 
u, cos a ay 1 ax . (9) 

Let $ denote the volume flow rate between the streamline s and some reference 
streamline sO. The continuity equation can now be expressed as 

I 
YS 

U,cosady=+ 
&cl 

or in the differential form as 

us= l 
Y+cosa’ 

where the subscript $ represents derivative with respect to $. From Eq. (10) one 
obtains for the velocity derivatives; 

au, 
ay= 

-L+ YY;,cosa 
cos a Yi G ’ 

aus G + Y’ Y” cos a 
ax --- cos a Pti rti 

(11) 

(12) 

By substituting Eqs. ( 11) and ( 12) into Eq. (9), restoring a in terms of Y’, and some 
rearrangement, one obtains 

Y,, P$ + Y,,( 1 + c”,, - 2Y, Y, YXj, = 0, 

where, for the sake of uniformity in the final equation, the subscript x has been used 
to denote the derivatives with respect to x. In Eq. (13) Y, the streamline coordinate, 
appears as a function of x and II/. The dependence on + represents the dependence 
of Y on its starting ordinate Y(x,). Equation (13) can also be obtained from the 
Laplace equation for t,G by transformation of the variables as shown in the Appen- 
dix. 
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Equation (13) along with Eq. (10) constitute the basic equations of the present 
approach to compute plane potential flows. Equation (10) determines U,, the 
streamwise velocity along streamline S, and Eq. ( 13) determines Y, the coordinate of 
the streamline S. 

Axisymmetric Flows 

Equations (6), (7), and (9) are equally valid for flows which are symmetric with 
respect to an axis. The variable Y, now represents the radial distance of the 
streamline s from the axis of symmetry. The continuity equation, however, now 
takes the form 

us= l 
2lcYY~coscc’ 

By using Eq. (14) to evaluate the velocity gradients in Eq. (9), and then 
proceeding as in the case of plane flows, one obtains the following equation for the 
streamline ordinate: 

III. FINITE DIFFERENCE APPROXIMATION AND SAMPLE COMPUTATIONS 

Let the subscript j denote a particular streamline, and the subscript i distance 
along x. Thus, YiJ represents y coordinate of the streamline j at x = (i - 1) Ax. 
Finite difference approximation to Eq. (13) is obtained by using center differencing 
[73 for all the derivatives; thus 

y =(yi+lj-yi-lj)- 
x 2Ax =” 

y =(yi+lJ-2yij+ ‘i-lj) 
xx Ax2 

3 

where for brevity we have introduced d,, the volume flow rate between the 
streamlines j and j - 1, defined by the relation 

y =Y~~+,d,-Yi~(d,+,+d,)+Y,~,d,+, 
IL* 0.5(dj+,+dj)$i+Idj ’ 

yx, = 
yi+1.t+,- Yiilj-I- Yi-lj+l+ Yj-,J-, 

2AX(dj+ 1 +d,) 
(16) 
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By substituting Eqs. (16), and some rearrangement, one obtains 

YiJ= $+2~,+u2’]e’[$(Yi+~j+ Yj-lj) 
I I+1 

+tyiJ+ldj+ yiJ-Idj+l)(l +a2)-2abY 

0.5(dj+ 1 + dj) did,+ 1 1 4 ’ 

where Q, b, d, and YXti are given in Eqs. (16). 
Sample computations were carried out for flow past a semi-infinite plane cylinder 

of width n/2 placed symmetrically in a channel of width rc. The exact solution for 
this problem is given by [S] 

i=v+f{y:tan-’ [%I}. (18) 

Flow is along the x axis and the stagnation point (tip of the cylinder), xq, is tanh-’ 
+ to the left of x = 0. Since the flow is symmetric with respect to the mid-plane, the 
computations were carried out only in the upper half of the channel. The grid and 
the boundary values of Yi,i used in the computations were as follows: 

No. of streamlines: 
Integration step: 
Upper boundary: 
Lower boundary: 

Channel inlet: 
Channel exit: 

11 
Ax = x,/3 = tanh - l(f)/3 

Yi,I, = 742 
YiJ = 0 forx<x, 

=Y given by Eq. (18) 
with Ic/ = 0, for x > xq 

x= -23Ax; Y,= (j- 1) 7r/20 
x = 2OAx; YMJ= (j- 1) 

(Y‘w, - Y44,l J/l0 

For this case all the dj are equal and the corresponding finite difference equation 
for YiJ is simply obtained from Eq. (17) by deleting all the dj. The resulting 
equation was solved by the method of successive displacement (Liebman method). 
Values of Y, were displaced until the maximum difference between the new values 
and the old values was less than 0.0001. The computations, carried out on IBM 
370/4341 operating under DOS operating system, took 2.8 s of CPU time. 

Results of the computations are shown in Fig. 3. The exact streamline pattern, 
given by Eq. (18), is too close to the computed streamlines, except for the 
streamline i = 2 (II/ = n/20), to be shown in the figure. The exact streamline for i = 2 
is shown in Fig. 3 by a broken line where it differs from the corresponding com- 
puted streamline. 

In the computations just described, the starting values assigned to Y, at the 
interior grid points were such that the streamlines were spaced equally between the 
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FIG. 3. Streamline pattern for flow past a semi-infinite cylinder of width x/2 placed symmetrically in 
a channel of width R. Solid lines represent the computed streamline pattern, and the broken line the 
exact solution where it differs from the computed one. 

top and the bottom wall for all x. To check the sensitivity of the algorithm to the 
starting values of Y,,, computations were repeated by assigning a starting value of 
zero to Yij at all the interior grid points. The results thus obtained were 
indistinguishable from the earlier results; however, this time the computations took 
5.8 s of CPU time. 

IV. CONCLUDING REMARKS 

A new approach, that uses the streamline coordinates as part of the dependent 
variables, has been presented to compute potential flows. The basic equation of this 
approach, Eq. (13), is nonlinear; this is in contrast to the linear equation, Laplace 
equation for the stream function, used in the conventional approach to solve poten- 
tial flow problems. However, because of the nature of the dependent variables 
employed, finite differencing of Eq. (13) does not require any special treatment in 
the neighborhood of the curved boundaries. The same finite difference 
approximation to Eq. (13), for example, Eq. (17), is equally applicable everywhere. 

In calculating flows past solid boundaries using Eulerian flow description and 
Cartesian coordinate system, one encounters difficulty when the mesh points of the 
coordinate system do not fall naturally on the solid boundaries. To overcome this 
difficulty, arising from the incompatibility of the Cartesian computational mesh and 
the boundaries, many authors (see, for example, Roberts and Forestor [9]) have in 
the recent years employed body fitted coordinate systems for cornputting flow 
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through ducts of arbitrary cross sections. The present approach calculates the 
streamline pattern, a body fitted coordinate system, as part of its dependent 
variables; thus, it seems quite well suited for computing flow through complex 
geometries. 

APPENDIX 

In this Appendix, Eq. (13) is derived from the Laplace equation for the stream 
function \c/, 

by transformation of the variables. Let 

? = f/(X> Y) and 5 = t-(x, Y I= x. (A21 

By using the standard technique for evaluating the second derivatives of the new 
variables with respect to the old variables (see, for example, Ref. [lo]) one obtains 
for the transformation (A2), 

ylFy= -3. (A4) 
1 

By letting q be 11/, substituting Eqs. (A3) and (A4) into Eq. (Al), and some 
rearrangement, one obtains Eq. (13). 
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